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We propose a mechanism of superconductivity from purely repulsive interactions in the strong-coupling
regime, where the Bardeen-Cooper-Schrieffer mechanism such as the spin-fluctuation approach is difficult to
apply. Based on the SU�2� slave-rotor representation of the Hubbard model, we find that the single energy scale
for the amplitude formation of Cooper pairs and their phase coherence is separated into two energy scales,
allowing the so-called pseudogap state where such Cooper pairs are coherent locally but not globally, inter-
preted as realization of the density-phase uncertainty principle. This superconducting state shows the
temperature-linear decreasing ratio of superfluid weight, resulting from strong phase fluctuations.
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I. INTRODUCTION

To find the mechanism of superconductivity from purely
repulsive interactions has been one of the central interests
during the last two decades associated with high-Tc
cuprates.1 It was shown that purely repulsive interactions can
turn into attractive ones via some renormalization processes
associated with spin-density-wave fluctuations, if the Fermi-
surface topology has a special nesting structure as the case of
high-Tc cuprates2 or Fe-based superconductors,3 for example,
described by the so-called spin-fluctuation approach. In this
approach phonons are replaced with antiferromagnetic fluc-
tuations taking the role of pairing glue,4 thus basically the
same as the strong-coupling Bardeen-Cooper-Schrieffer
�BCS� theory in the Eliashberg approximation.5 Unfortu-
nately, such an approach loses its theoretical validity in the
strong-coupling regime because the spin-fermion model it-
self and its evaluation way are justified only in the weak-
coupling limit,6 i.e., U /D�1 with the interaction strength U
and half bandwidth D.

This reminds us of two kinds of theories for magnetism;
the Hertz-Moriya-Millis �HMM� theory is the standard
framework for itinerant electrons7 while the magnetism from
localized spins is successfully described by the Schwinger-
boson gauge theory.8 Importantly, the strong-coupling ap-
proach of the Schwinger-boson theory gives rise to two kinds
of energy scales associated with formation of short-range
antiferromagnetic correlations and long-range ordering for
antiferromagnetism. Emergence of the spin-gapped state
above an antiferromagnetic order reflects strong quantum
fluctuations of spin dynamics, guaranteed by the uncertainty
relation of spins.

In this paper we propose a mechanism of superconductiv-
ity in the strong-coupling regime. Recently, one of us has
suggested an SU�2� slave-rotor representation of the Hub-
bard model, where not only local-density fluctuations but
also on-site pairing excitations are taken into account on
equal footing, giving rise to superconducting fluctuations
naturally.9 We here obtain an effective U�1� gauge theory
called the pair-rotor theory of the Hubbard model, where

phase fluctuations of Cooper pairs are extracted from the
SU�2� slave-rotor description. We show that the single en-
ergy scale for the amplitude formation of Cooper pairs and
their phase coherence is separated into two energy scales,
allowing the so-called pseudogap state where the Cooper
pairs are coherent locally but not globally. One can say that
this superconducting state resembles the resonating-valence-
bond �RVB� superconductivity.10 However the present
mechanism is of charge-fluctuation induced, while for the
RVB the slave-boson study of the t-J model11 is of spin-
fluctuation induced, where charge fluctuations are com-
pletely frozen out.

Superconductivity of the U�1� pair-rotor theory is analo-
gous with antiferromagnetism of the Schwinger-boson
theory, where the amplitude formation of Cooper pairs and
their global phase coherence correspond to short-range anti-
ferromagnetic correlations and condensation of Schwinger
bosons, respectively, and the density-phase uncertainty
matches with the uncertainty relation between spins. In this
respect the pseudogap state of the pair-rotor theory agrees
with the spin-gapped phase of the Schwinger-boson theory,
identified with the hallmark of the strong-coupling approach.
On the other hand, this description should be differentiated
from the U�1� slave-rotor theory of the t-J-U model where
d-wave singlet pairs originate from the spin-exchange term,
but the U�1� slave-rotor field has nothing to do with pairing
fluctuations.9

We would like to point out an interesting reformulation of
the Hubbard model, where the role of on-site pairing fluctua-
tions is emphasized.12 Although this formulation differs from
the present SU�2� slave-rotor theory which is a gauge theory,
it also suggests that such quantum fluctuations give rise to
superconducting correlations in doped Mott insulators.

II. SU(2) SLAVE-ROTOR REPRESENTATION OF THE
HUBBARD MODEL

We rewrite the Hubbard model
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where an electron �i= �
ci↑
ci↓

† � is assumed to be a composite of a

holon Ui= �
zi↑ −zi↓

†

zi↓ zi↑
† � and a spinon �i= �
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† � carrying charge and
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with the constraint 
zi↑
2+ 
zi↓
2=1. Eij and Fij are 2	2 ma-
trix fields associated with hopping of holons and spinons,

respectively, and �� i is an isospin field related with on-site
density and pairing potentials. � is an electron chemical po-
tential and Aij is an external electromagnetic field.

It is not difficult to see equivalence between the SU�2�
slave-rotor effective Lagrangian �Eq. �2�� and Hubbard
model �Eq. �1��, integrating over field variables of Eij, Fij,
and �� i and replacing the composite field Ui

†�i with an elec-
tron field �i. The procedure is well described in the previous
study.9 An important feature in the SU�2� slave-rotor descrip-
tion is the emergence of pairing correlations between nearest
neighbor electrons, given by off-diagonal hopping in Fij
which results from on-site pairing fluctuations, captured by
the off-diagonal variable zi↓ of the SU�2� matrix field Ui.
However, the appearance of pairing correlations does not
necessarily lead to superconductivity because their global co-
herence, described by condensation of SU�2� matrix holons,
is not guaranteed. The similar situation happens in the SU�2�
slave-boson theory of the t-J model.11

We write SU�2� hopping matrices as Eij �EWij�3 and
Fij �FWij�3, where their amplitudes are assumed to be ho-
mogeneous and the SU�2� phase factor can be represented as

Wij � Xij − Yij
†

Yij Xij
† �

without losing generality, satisfying the unitary constraint
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2=1. Then, we find an effective SU�2� slave-rotor
action
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Our main problem is how to extract dynamics for phase
fluctuations of pairing order parameters from the boson sec-
tor of the SU�2� slave-rotor theory. The easy-axis approxi-
mation of Ui=ei�i�3 implying zi↓=0 does not allow pairing

correlations, identified with on-site density fluctuations and
giving rise to the Mott transition from a paramagnetic Mott
insulator to a Fermi-liquid metal via their condensation.13 In
this study we take an easy-plane limit, introducing pairing
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correlations. Justification of this approximation can be given
in the similar way as the SU�2� slave-boson theory.11

III. U(1) PAIR SLAVE-ROTOR THEORY

A. Easy-plane approximation

We introduce an isospin field

I�i �
1

2
zi�

† �����zi��,

and consider an easy-plane limit

I�i = Ii
xx̂ + Ii

yŷ

with Ii
x2+ Ii

y2=1 /2, described by
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1
�2

ei�i↑, zi↓ =
1
�2

ei�i↓. �5�

Inserting Eq. �5� into Eq. �4�, we find
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�6�

where the spinon part is the same as that of Eq. �4�. As shown in this effective theory, the presence of the off-diagonal term
in the kinetic energy of rotorons allows us to control global phase coherence of spinon-pairing excitations. We note that this
effective Lagrangian is analogous with that of the d-wave pairing state in the SU�2� slave-boson theory, where gauge fluctua-
tions may give rise to composite pairing fluctuations between different boson species,11 corresponding to ��i↑+�i↓� /2 in the
U�1� pair-rotor theory.

The isospin field was argued to prefer an easy plane in the nonlinear � model description of the SU�2� slave-boson theory
when holes are doped, resulting from an effective potential for the easy-plane anisotropy.11 Even if the easy-plane approxi-
mation is difficult to justify self-consistently, the present formulation gives us a chance to investigate the role of pairing
fluctuations beyond the conventional description.

B. Gauge transformation

1. Spinon sector

One can make the phase factor gauged away in the phase-gauge coupling term of Eq. �6�, performing the gauge transfor-
mation

�i
x − i�i

y → ��i
x − i�i

y�ei��i↑−�i↓�,

�i
x + i�i

y → ��i
x + i�i

y�e−i��i↑−�i↓�. �7�

Then, the spinon Lagrangian in Eq. �4� is given by
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† � + H.c.� .

To make the phase factor gauged away in the off-diagonal part of the spinon Lagrangian, we introduce the gauge transfor-
mation of

�i↑ = e−i��i↑−�i↓�/2�i+,

�i↓
† = ei��i↑−�i↓�/2�i−

† , �8�

where �i� is a renormalized spinon via virtual pairing fluctuations. Then, the phase field appears in the time derivative and
SU�2� gauge matrix Wij. Considering the gauge transformation

�i
z → �i

z +
1

2
����i↑ − ���i↓� ,

Xij → ei��i↑−�i↓�/2Xije
−i��j↑−�j↓�/2,
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Yij → e−i��i↑−�i↓�/2Yije
−i��j↑−�j↓�/2, �9�

we find an effective Lagrangian for renormalized spinons

L� = �
i
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† � + H.c.� ,

where the phase field is removed completely.

2. Pairon sector

Based on Eqs. �7� and �9�, we obtain
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Introducing new phase variables

1

2
��i↑ + �i↓� � �ic,

1

2
��i↑ − �i↓� � �is, �10�

the rotor Lagrangian becomes
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2u
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+ i�Xij
† − Xij�sin��ic − � jc + Aij�� ,

where anomalous phase-gauge couplings are gauged away.
Comparing this pairon Lagrangian with Eq. �6�, we see that
the phase field of �is disappears via gauge transformation.
We call �ic pairon because it controls coherence of local
singlet pairs, basically the same role as Schwinger-bosons in
the Schwinger-boson theory.8

C. U(1) pair-rotor effective Lagrangian

We write down an effective U�1� pair-rotor theory of the
Hubbard model for phase-fluctuating superconductivity

Z =� D��i�,�ic,�� i,Xij,Yij�
�
Xij
2 + 
Yij
2 − 1�

	exp− �
0
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d�L�, L = L� + L� + 4t�
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EF ,
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�11�

where superconductivity is characterized by condensation of
pairons �ei�ic��0 in the presence of pairing correlations, Yij,
basically the same as the fact that antiferromagnetism of lo-
calized spins is described by condensation of Schwinger-
bosons in the presence of local antiferromagnetic correla-
tions. Actually, the pairon field is identified with the phase
field of the pairing order parameter since Yij plays the role of
phase stiffness for �ic.

An interesting feature of the U�1� pair-rotor theory is
emergence of two energy scales from the single energy scale
u / t in the Hubbard model, corresponding to appearance of
incoherent singlet correlations and global coherence of such
preformed pairs. The former energy scale may be identified
with the pseudogap temperature T� and the latter will be the
superconducting transition temperature Tc. Considering that
the spinon sector is nothing but the BCS theory in the mean-
field approximation, T� is expected to coincide with the
mean-field transition temperature of the BCS theory. On the
other hand, the pairon Lagrangian corresponds to the XY
model in the mean-field approximation, thus Tc will be the
coherence temperature of the XY model.

D. Electron as a composite of spinon and pairon

An electron field can be represented as a composite object
of a spinon and a pairon,
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ci↑

ci↓
† � =

1
�2

 e−i�ic e−i�ic

− ei�ic ei�ic
��i↑

�i↓
† � , �12�

where condensation of pairons �e−i�ic��0 recovers the BCS
quasiparticle relation, allowing superconductivity. Inserting
the U�1� pair-rotor representation �Eq. �12�� into the Hubbard
model �Eq. �1��, one can obtain the U�1� pair-rotor theory
�Eq. �11�� from the Hubbard model directly. The inverse
transformation expresses the spinon field in terms of a pairon
field and an electron field,

�i↑ =
1
�2

ei�icci↑ −
1
�2

e−i�icci↓
† ,

�i↓
† =

1
�2

ei�icci↑ +
1
�2

e−i�icci↓
† .

Using Eq. �12�, one can write down the Cooper pair field
as

�ij
cp � �ci↑cj↓ − ci↓cj↑�

�
1

2
�e−i��ic+�jc�����i↑

† � j↑ + � j↑
† �i↑� + ��i↓

† � j↓ + � j↓
† �i↓�

+ ��i↑
† � j↓

† − �i↓
† � j↑

† � + ��i↑� j↓ − �i↓� j↑�� ,

where not only particle-particle pairing of spinons but also
their particle-hole pairing is included. In this respect the pair-
ing symmetry of Cooper pairs has always an s component
although the particle-particle channel is d wave. However,
this quantity should not be considered to represent the true
pairing symmetry of the superconducting pair. Actually, it is
measured from the electron spectral function as an excitation
gap, given by

Gij,↑↑
el � − �ci↑cj↑

† �

� −
1

2
�e−i��ic−�jc����i↑� j↑

† + �i↓
† � j↑

† + �i↑� j↓ + �i↓
† � j↓� .

In this respect the pairing symmetry of the superconducting
order parameter will be d wave as far as the spinon-pairing
order parameter is d wave.

E. d-wave mean-field ansatz

We take the d-wave ansatz for the pairing field
�Yii+x̂ ,Yii+ŷ�= �Y ,−Y� and uniform approximation for the
hopping parameter �Xii+x̂ ,Xii+ŷ�= �X ,X�. The pairing potential
is set �i

x,y =0 in the mean-field approximation because only
virtual fluctuations �zi�� are allowed due to high-energy cost
while the density potential is replaced with �i

z=−i� for no-
tational convenience. Introducing bic=ei�ic with the rotor
constraint 
bic
2=1, we write down the mean-field Lagrang-
ian of the U�1� pair-rotor theory in the momentum space,

Z =� D��k�,bkc�e−	0
�d�L,

L = L� + L� + 8NtEF + N�g�X2 + Y2 − 1� ,

L� = �
k

��k↑
† �−k↓ ��� − � 0

0 �� + �
� �k↑
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† �

− 2tF�
k

��k↑
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� �k↑

�−k↓
† � ,

LU =
1

2u
�

k

��i�� + i��bkc�2 − 4tEY�
k

�kbkc
† bkc

+ �c�
k

�
bkc
2 − 1� +
1

2u
�

i

�i� − i��2, �13�

where �k=cos kx+cos ky and �k=cos kx−cos ky. N is number
of lattice sites. �g and �c are Lagrange multiplier fields to
impose the constraints for SU�2� gauge-matrix fields and
pair-rotor fields, respectively.

Performing integration of spinon and pairon fields, we
find the U�1� pair-rotor mean-field free energy

F�b,Y,E,F,�c,�,�;
,T�

= −
2

�
�

k

ln�2 cosh�Ek
f

2
��

+
1

�
�

q
�ln�2 sinh�

2
�Eq

b − ����
+ ln�2 sinh�

2
�Eq

b + �����
+ N8tEF −

1

2u
�� − ��2 + �c�b2 − 1�

−
�2

2u
b2 − 8tEYb2 − �
� , �14�

where b, 
, and � are condensation amplitude, hole concen-
tration, and inverse temperature 1 /T, respectively. The fer-
mion spectrum

Ek
f = ��2tF�1 − Y2�k + ��2 + �2tFY�k�2

coincides with the d-wave BCS theory,14 and the boson spec-
trum is also relativistic,

Eq
b = �− 8utEY�q + 2u�c,

basically the same as the Schwinger-boson theory.8

F. Phase diagram

It is interesting to observe that the pairon sector of the
U�1� pair-rotor theory is almost the same as the Schwinger-
boson part of the U�1� slave-fermion theory,15 where pairing
correlations or antiferromagnetic fluctuations give rise to dy-
namics of pairons or Schwinger bosons, respectively. Actu-
ally, we find that the pairing order parameter Y decreases
monotonically as hole concentration increases. Since Y acts
as the stiffness parameter for b, the condensation probability
b2 is reduced �inset of Fig. 1�. This is basically the same as
the slave-fermion theory15 where weakening of antiferro-
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magnetic correlations results in reduction in boson conden-
sation. On the other hand, the superconducting transition
temperature Tc, determined by vanishment of superfluid den-
sity, is shown to increase as hole concentration increases in
small doping �Fig. 1�.

IV. SUPERFLUID DENSITY

A. Ioffe-Larkin composition rule

We start from the U�1� pair-rotor theory

Lf = �
i

��i↑
† �i↓ ��� − iai� − ici�

+

− ici�
− �� + iai�

��i↑

�i↓
† �

− tF�
�ij�
���i↑

† �i↓ �Xeiaij Ye−icij

Yeicij − Xe−iaij
�� j↑
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† � + H.c.� ,

Lb =
1

2u
�

i

����ic − ci�
− − i������ic − ci�

+ − i��

− 2tE�
�ij�

�2Y cos�cij�cos��ic − � jc + Aij�

− 2X sin�aij�sin��ic − � jc + Aij�� +
1

2u
�

i

�ai� + i��2,

�15�

where low-energy fluctuations of mean-field order param-
eters are allowed, given by two kinds of gauge fields

Xij = Xeiaij, Yij = Yeicij

for their spatial components and

ai� = �i
z, ci�

� = �i
x � i�i

y

for their time components.
The partition function can be evaluated as a function of an

electromagnetic field, expanding the effective action up to
the second order for two kinds of gauge fluctuations,

ZA =� DaijDcijD�i�D�ice
−	0

�d��Lf+Lb�

� � DaijDcij exp�− FMF
f − FMF

b

−
1

2
 �2Ff
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2 + 2
�2Ff

�aijcij
aijcij +

�2Ff
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2 cij

2�
−

1

2
 �2Fb
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2 +
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2 cij

2 +
�2Fb

�Aij
2 Aij

2 + 2
�2Fb

�aijcij
aijcij

+ 2
�2Fb

�aijAij
aijAij + 2

�2Fb

�cijAij
cijAij�� , �16�

where

Ff�aij,cij� = −
1

�
ln� D�i�e−	0

�d�Lf��i�,aij,cij�,

Fb�aij,cij,Aij� = −
1

�
ln� D�ice

−	0
�d�Lb��ic,aij,cij,Aij�

and

FMF
f = Ff�0,0�, FMF

b = Fb�0,0,0� .

Performing the Gaussian integration for the two gauge
fields, we find the partition function with an electromagnetic
field

ZA � e−FMF
f −FMF

b
exp�−

1

2�− �AA
b +

�aA
b2

�aa
f + �aa

b

+

�cA
b +

�ac
f + �ac

b

�aa
f + �aa

b �2

�cc
f + �cc

b −
��ac

f + �ac
b �2

�aa
f + �aa

b
�Aij

2� ,

where ��
f ,b �−��2Ff ,b� / ����� are current-current correla-

tion functions with  ,�=a ,c ,A. As a result, the superfluid
density is given by

�s = − �AA
b +

�aA
b2

�aa
f + �aa

b +

�cA
b +

�ac
f + �ac

b

�aa
f + �aa

b �2

�cc
f + �cc

b −
��ac

f + �ac
b �2

�aa
f + �aa

b

.

�17�

B. Each current-current correlation function

The current-current correlation function can be derived as
follows:

0.00 0.02 0.04 0.06 0.08 0.10
0.200

0.201

0.202

b
2

0.00 0.02 0.04 0.06 0.08 0.10

0.005

0.010

0.015

0.020

0.025

δ

Tc

δ

FIG. 1. As hole concentration 
 increases, the superconducting
transition temperature Tc�
� also increases in underdoped region
�u / t=0.3� although the condensation amplitude b2�
� �inset�
decreases.
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�AA
b � −

�2Fb�Aij�
�Aij

2

=
1

Zb
� D�ic−

�Sb

�Aij
�−

�Sb

�Aij
�e−Sb

− � 1

Zb
� D�ic−

�Sb

�Aij
�e−Sb�2

+
1

Zb
� D�ic−

�2Sb

�Aij
2 �e−Sb

� �jij
bAjij

bA� − �jij
bA�2 + �Kij

bAA� . �18�

The first and second terms show the paramagnetic response,
given by the current-current correlation function, while the
last term displays the diamagnetic response, expressed by the
kinetic-energy term. The “off-diagonal” current-response
function is given by

�aA
b � −

�2Fb�aij,Aij�
�Aij � aij

=
1

Zb
� D�ic−

�Sb

�Aij
�−

�Sb

�aij
�e−Sb

− � 1

Zb
� D�ic−

�Sb

�Aij
�e−Sb�

	� 1

Zb
� D�ic−

�Sb

�aij
�e−Sb�

+
1

Zb
� D�ic−

�2Sb

�Aij � aij
�e−Sb

� �jij
bAjij

ba� − �jij
bA��jij

ba� + �Kij
baA� , �19�

basically the same as the above. All other current-response
functions are obtained in the same way as this.

Currents and kinetic terms are

jij
bA � −

�Sb

�Aij
= − 4tEY sin��ic − � jc� ,

Kij
bAA � −

�2Sb

�Aij
2 = − 4tEY cos��ic − � jc� ,

jij
ba � −

�Sb

�aij
= − 4tEX sin��ic − � jc� ,

Kij
baa � −

�2Sb

�aij
2 = 0, jij

bc � −
�Sb

�cij
= 0,

Kij
bcc � −

�2Sb

�cij
2 = − 4tEY cos��ic − � jc� ,

Kij
baA � −

�2Sb

�Aij � aij
= − 4tEX cos��ic − � jc� ,

Kij
bcA � −

�2Sb

�Aij � cij
= 0,

Kij
bac � −

�2Sb

�aij � cij
= 0 �20�

for pairons and

jij
fa � −

�Sf

�aij
= − itFX��i�

† � j� − � j�
† �i�� ,

Kij
faa � −

�2Sf

�aij
2 = − tFX��i�

† � j� + � j�
† �i�� ,

jij
fc � −

�Sf

�cij

= − itFY��i↑
† � j↓

† + �i↓
† � j↑

† � − itFY��i↓� j↑ + �i↑� j↓� ,

Kij
fcc � −

�2Sf

�cij
2

= − tFY��i↑
† � j↓

† − �i↓
† � j↑

† � − tFY��i↓� j↑ − �i↑� j↓� ,

Kij
fac � −

�2Sf

�aij � cij
= 0 �21�

for spinons in equilibrium of aij ,cij ,Aij→0.

C. Simplification in the expression of superfluid density

Evaluating each correlation function, we find

�ac
f = 0, �ac

b = 0, �cA
b = 0. �22�

It is clear both mathematically and physically that these con-
tributions should vanish. Correlations between normal and
pairing currents do not exist in the spinon dynamics. Pairing-
type currents do not appear in the pairon sector, causing the
second and third equalities. As a result, the expression for the
superfluid density is simplified as follows:

�s = − �AA
b +

�aA
b2

�aa
f + �aa

b , �23�

similar to the conventional Ioffe-Larkin-type composition.16

D. Evaluation of superfluid density

Correlation functions for superfluid density are

�AA
b �q,i�� = �jbA�q,i��jbA�− q,− i���

− �jbA�q,i����jbA�− q,− i��� + �KAA
b �q,i��� ,

�aA
b �q,i�� = �jba�q,i��jbA�− q,− i���

− �jba�q,i����jbA�− q,− i��� + �KaA
b �q,i��� ,

�aa
b �q,i�� = �jba�q,i��jba�− q,− i���

− �jba�q,i����jba�− q,− i��� ,
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�aa
f �q,i�� = �j fa�q,i��j fa�− q,− i���

− �j fa�q,i����j fa�− q,− i��� + �Kaa
f �q,i���

�24�

in the energy-momentum space, where corresponding cur-
rents and kinetic energies are given by

jbA
x �q,i�� = − 4tEY�

k

sinkx +
qx

2
�bkc

† bk+qc,

KAA
bx �q,i�� = − 4tEY�

k

coskx +
qx

2
�bkc

† bk+qc,

jba
x �q,i�� = − 4tEX�

k

sinkx +
qx

2
�bkc

† bk+qc,

KaA
bx �q,i�� = − 4tEX�

k

coskx +
qx

2
�bkc

† bk+qc,

j fa
x �q,i�� = 2tFX�

k

sinkx +
qx

2
��k�

† �k+q�,

Kaa
fx �q,i�� = − 2tFX�

k

coskx +
qx

2
��k�

† �k+q�. �25�

In this expression we take the following replacement

cos��ic − � jc� →
1

2
�bic

† bjc + bjc
† bic� ,

sin��ic − � jc� →
i

2
�bic

† bjc − bjc
† bic�

for evaluation of correlation functions.
Inserting Eq. �25� into Eq. �24�, we find each current-

current correlation function in terms of each Green’s func-
tion,

�AA
bxx�q,i�� = 16t2E2Y2�

k

sinkx +
qx

2
�sinkx −

qx

2
� 1

�
�
i�

	Gb�k + q,i� + i��Gb�k,i��

+ 4tEY
1

�
�
i�

�
k

cos kxGb�k,i��
�q�
�i�� ,

�aa
bxx�q,i�� = 16t2E2X2�

k

sinkx +
qx

2
�sinkx −

qx

2
� 1

�
�
i�

	Gb�k + q,i� + i��Gb�k,i��

+ 4tEX
1

�
�
i�

�
k

sin kxGb�k,i��
�q�
�i�� ,

�aA
bxx�q,i�� = 16t2E2XY�

k

sinkx +
qx

2
�sinkx −

qx

2
� 1

�
�
i�

	Gb�k + q,i� + i��Gb�k,i��

+ 4tEX
1

�
�
i�

�
k

cos kxGb�k,i��
�q�
�i��

�26�

for pairon excitations and

�aa
f �q,i�� = − 4t2F2X2�

k

sinkx +
qx

2
�sinkx −

qx

2
� 1

�
�
i�

	tr�G f�k + q,i� + i��G f�k,i���

− 2tFX
1

�
�
i�

�
k

cos kxtr��zG f�k,i���
�q�
�i��

�27�

for spinon excitations.
The pairon propagator is

Gb�q,i�� = − b2
q,0
�,0 +
u

Eq
b� 1

i� − � − Eq
b −

1

i� − � + Eq
b� ,

�28�

and the spinon Nambu propagator is

G f�k,i�� � − � �k↑

�−k↓
† ���k↑

† �−k↓ ��
� Gf�k,i�� F�k,i��

F��k,i�� − Gf
��k,i��

� ,

where the normal Green’s function is

Gf�k,i�� =
1

2
�1 −

� + 2tFX�k

Ek
f

i� − Ek
f +

1 +
� + 2tFX�k

Ek
f

i� + Ek
f �

�29�

and the anomalous propagator

F�k,i�� = −
tFY�k

Ek
f � 1

i� − Ek
f −

1

i� + Ek
f � . �30�

Inserting these Green’s functions into Eqs. �26� and �27�, and
performing the Matsubara frequency summation, we obtain
final expressions for all current-current correlation functions
in the static limit,

�AA
bxx�q → 0,i� = 0�

� 16t2E2Y2u2�
k

sin2 kx

Ek
b2

	��−
�n�Ek

b + ��

��Ek
b + �� � +

n�Ek
b + �� − n�− Ek

b + ��

Ek
b �

− 4tEYb2 − 4tEYu�
k

cos kx

Ek
b �n�Ek

b + �� − n�− Ek
b + ��� ,
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�aa
bxx�q → 0,i� = 0�

� 16t2E2X2u2�
k

sin2 kx

Ek
b2

	��−
�n�Ek

b + ��

��Ek
b + �� � +

n�Ek
b + �� − n�− Ek

b + ��

Ek
b �

− 4tEXu�
k

sin kx

Ek
b �n�Ek

b + �� − n�− Ek
b + ��� ,

�aA
bxx�q → 0,i� = 0�

� 16t2E2XYu2�
k

sin2 kx

Ek
b2

	��−
�n�Ek

b + ��

��Ek
b + �� � +

n�Ek
b + �� − n�− Ek

b + ��

Ek
b �

− 4tEXb2 − 4tEXu�
k

cos kx

Ek
b �n�Ek

b + �� − n�− Ek
b + ���

�31�

for pairons and

�aa
f �q → 0,i� = 0�

� − 4t2F2X2�
k

sin2 kx�−
� f�Ek

f�
�Ek

f �
− 2tFX�

k

cos kx� + 2tFX�k

Ek
f �tanh�Ek

f

2
� �32�

for spinons, where the spinon contribution is basically the
same as that of the BCS theory.14 Inserting Eqs. �31� and �32�
into Eq. �23�, we find the superfluid density as a function of
hole concentration and temperature in the U�1� pair-rotor
mean-field theory.

E. Superfluid density as a function of hole concentration
and temperature

We find that the dominant contribution is given by

�s�T� � − �AA
bxx�q → 0,i� = 0;T�

= 4tEYb2 + 4tEYu�
k

cos kx

Ek
b �n�Ek

b + �� − n�− Ek
b + ���

− 16t2E2Y2u2�
k

sin2 kx

Ek
b2

	��−
�n�Ek

b + ��

��Ek
b + �� � +

n�Ek
b + �� − n�− Ek

b + ��

Ek
b � ,

�33�

where the first two terms are diamagnetic contributions and
the last term is paramagnetic. This expression is simplified as

�s�T� � �s + �d�s�T�
dT

�
T→0

T , �34�

where the zero-temperature superfluid density
is �s�4tEYb2 and the decreasing ratio is �

d�s�T�
dT �T→0

� 1
�2 ln�− 2��utEY

� � with momentum cutoff �.
Figure 2 shows the superfluid density with various hole

doping. Interestingly, the decreasing ratio of the superfluid
density is enhanced as hole concentration is reduced, giving
rise to the monotonically increasing Tc�
� in Fig. 1. We in-
terpret this tendency as the realization of the density-phase
uncertainty principle because phase fluctuations of Cooper
pairs are stronger in small doping.

We would like to point out that reduction in the superfluid
density originates from phase fluctuations in the U�1� pair-
rotor theory instead of scattering with Dirac fermions.17 The
contributions of Dirac fermions also result in the
temperature-linear decreasing ratio. However, such contribu-
tions become irrelevant in the Ioffe-Larkin expression, re-
sulting from nonminimal coupling to gauge fields in the
pairon sector.

V. DISCUSSION

A. Comparison with the BCS theory

It is interesting to observe that the U�1� pair-rotor theory
�Eq. �14�� is almost “dual” to the slave-fermion theory,15

where the charge SU�2� symmetry is replaced with the spin
SU�2� symmetry. In this respect the pseudogap state, where
Cooper pairs are not coherent globally, is a mirror image of
the so-called anomalous metal phase, sometimes referred as
the algebraic charge liquid in the slave-fermion
description,15,18,19 where antiferromagnetic correlations exist
only locally. Emergence of such an anomalous state reflects
strong quantum fluctuations based on the uncertainty prin-
ciple.

It is important to notice that the SU�2� slave-rotor repre-
sentation is difficult to be applied to the negative-interaction
model because the time-fluctuation term in the rotor La-

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.0

0.1

0.2

0.3

0.4

T

s
ρ

FIG. 2. �Color online� The decreasing ratio of superfluid density
�s�T� is enhanced as hole concentration is reduced, where 
=0.01
�solid�, 
=0.03 �dashed�, 
=0.05 �dash dot�, 
=0.07 �dash dot dot�,
and 
=0.09 �dotted�.
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grangian of Eq. �2� becomes negative, thus its path-integral
representation is not defined consistently. This implies that
the U�1� pair-rotor theory differs from the BCS theory in
itself.

B. Origin of spectral asymmetry

We show that the spectral asymmetry20 appears
naturally in the U�1� pair-rotor theory. The electron Green’s
function is given by multiplication of the boson �Eq. �28��
and fermion �Eqs. �29� and �30�� Green’s functions,
Gxx�

el �−Gxx�
b �Gxx�

f +Fxx�
� +Fxx�−Gxx�

f� �, where Fxx� is an
anomalous Green’s function due to pairing. Then, we obtain
the spectral intensity Ael�k ,��=Acoh�k ,��+Ain�k ,��, where
Ain�k ,�� is an incoherent background and the coherent part
is

Acoh�k,�� = b2�1 −
2tFY�k

Ek
f �
�� − Ek

f�

+ 1 +
2tFY�k

Ek
f �
�� + Ek

f�� , �35�

showing the spectral asymmetry which originates from pair-
ing correlations. This predicts that the spectral asymmetry
will disappear when pairing correlations vanish at a tempera-
ture, usually identified with the pseudogap temperature T�.
More quantitative analysis is necessary.

C. Application of the SU(2) slave-rotor theory
to one dimension

It is valuable to apply the SU�2� slave-rotor representation
to the one-dimensional Hubbard model. Actually, one has the
same SU�2� slave-rotor Lagrangian as Eq. �2� in one dimen-
sion. Considering that the fermion part is an SU�2� gauge
theory in �1+1�D, non-Abelian bosonization of QCD2 re-

sults in the SUk=1�2� Wess-Zumino-Novikov-Witten
�WZNW� theory21 with level k. Combining this fermion sec-
tor with the pairon part, we obtain the SO�4� WZNW theory
for spin dynamics and SO�4� nonlinear � model without the
topological term for charge dynamics at half filling ��=0�,
where spin dynamics is decoupled from charge dynamics.21

As a result, charge fluctuations are gapped, corresponding to
a Mott insulator, while spin excitations are critical due to the
presence of the topological term. Hence charge fluctuations
are described by the pair-rotor Lagrangian even in one di-
mension, implying that our formulation generalizes the
bosonization scheme of one-dimensional charge dynamics.

VI. CONCLUSION

In this paper we proposed a mechanism of superconduc-
tivity based on the U�1� pair-rotor theory, where quantum
fluctuations for phase dynamics of Cooper pairs are taken
into account. An important feature is that the single energy
scale for the Cooper pair formation and phase coherence is
separated into two energy scales, allowing the pseudogap
phase, where quantum phase fluctuations are so strong as to
destroy the superconductivity, but superconducting correla-
tions still exist at least locally. We argued that emergence of
such two energy scales is the hallmark of the strong-coupling
approach as the Schwinger-boson theory for antiferromag-
netism of localized spins where the spin-gap phase corre-
sponds to the pseudogap state, differentiated from the weak-
coupling approach such as the BCS theory5 or HMM
framework.7
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